How Large Language Models Are Changing My Job

Generative artificial intelligence, and large language models in particular, are starting to change how countless technical and creative professionals do their jobs. Programmers, for example, are getting code segments by prompting large language models. And graphic arts software packages such as Adobe Illustrator already have tools built-in that let designers conjure illustrations, images, or patterns by describing them.

But such conveniences barely hint at the massive, sweeping changes to employment predicted by some analysts. And already, in ways large and small, striking and subtle, the tech world’s notables are grappling with changes, both real and envisioned, wrought by the onset of generative AI. To get a better idea of how some of them view the future of generative AI, IEEE Spectrum asked three luminaries—an academic leader, a regulator, and a semiconductor industry executive—about how generative AI has begun affecting their work. The three, Andrea Goldsmith, Juraj Čorba, and Samuel Naffziger, agreed to speak with Spectrum at the 2024 IEEE VIC Summit & Honors Ceremony Gala, held in May in Boston.

Click to read more thoughts from:

  1. Andrea Goldsmith, Dean of Engineering at Princeton University.
  2. Juraj Čorba, senior expert on digital regulation and governance, Slovak Ministry of Investments, Regional Development
  3. Samuel Naffziger, senior vice president and a corporate fellow at Advanced Micro Devices

Andrea Goldsmith

Andrea Goldsmith is Dean of Engineering at Princeton University.

There must be tremendous pressure now to throw a lot of resources into large language models. How do you deal with that pressure? How do you navigate this transition to this new phase of AI?

Andrea J. Goldsmith

Andrea Goldsmith: Universities generally are going to be very challenged, especially universities that don’t have the resources of a place like Princeton or MIT or Stanford or the other Ivy League schools. In order to do research on large language models, you need brilliant people, which all universities have. But you also need compute power and you need data. And the compute power is expensive, and the data generally sits in these large companies, not within universities.

So I think universities need to be more creative. We at Princeton have invested a lot of money in the computational resources for our researchers to be able to do—well, not large language models, because you can’t afford it. To do a large language model… look at OpenAI or Google or Meta. They’re spending hundreds of millions of dollars on compute power, if not more. Universities can’t do that.

But we can be more nimble and creative. What can we do with language models, maybe not large language models but with smaller language models, to advance the state of the art in different domains? Maybe it’s vertical domains of using, for example, large language models for better prognosis of disease, or for prediction of cellular channel changes, or in materials science to decide what’s the best path to pursue a particular new material that you want to innovate on. So universities need to figure out how to take the resources that we have to innovate using AI technology.

We also need to think about new models. And the government can also play a role here. The [U.S.] government has this new initiative, NAIRR, or National Artificial Intelligence Research Resource, where they’re going to put up compute power and data and experts for educators to use—researchers and educators.

That could be a game-changer because it’s not just each university investing their own resources or faculty having to write grants, which are never going to pay for the compute power they need. It’s the government pulling together resources and making them available to academic researchers. So it’s an exciting time, where we need to think differently about research. Meaning universities need to think differently. Companies need to think differently about how to bring in academic researchers, how to open up their compute resources and their data for us to innovate on.

As a dean, you are in a unique position to see which technical areas are really hot, attracting a lot of funding and attention. But how much ability do you have to steer a department and its researchers into specific areas? Of course, I’m thinking about large language models and generative AI. Is deciding on a new area of emphasis or a new initiative a collaborative process?

Goldsmith: Absolutely. I think any academic leader who thinks that their role is to steer their faculty in a particular direction does not have the right perspective on leadership. I describe academic leadership as really about the success of the faculty and students that you’re leading. And when I did my strategic planning for Princeton Engineering in the fall of 2020, everything was shut down. It was the middle of COVID, but I’m an optimist. So I said, “Okay, this isn’t how I expected to start as dean of engineering at Princeton.” But the opportunity to lead engineering in a great liberal arts university that has aspirations to increase the impact of engineering hasn’t changed. So I met with every single faculty member in the School of Engineering, all 150 of them, one-on-one over Zoom.

And the question I asked was, “What do you aspire to? What should we collectively aspire to?” And I took those 150 responses, and I asked all the leaders and the departments and the centers and the institutes because there already were some initiatives in robotics and bioengineering and in smart cities. And I said, “I want all of you to come up with your own strategic plans. What do you aspire to in these areas? And then let’s get together and create a strategic plan for the School of Engineering.” So that’s what we did. And everything that we’ve accomplished in the last four years that I’ve been dean came out of those discussions, and what it was the faculty and the faculty leaders in the school aspired to.

So we launched a bioengineering institute last summer. We just launched Princeton Robotics. We’ve launched some things that weren’t in the strategic plan that bubbled up. We launched a center on blockchain technology and its societal implications. We have a quantum initiative. We have an AI initiative using this powerful tool of AI for engineering innovation, not just around large language models, but it’s a tool—how do we use it to advance innovation and engineering? All of these things came from the faculty because, to be a successful academic leader, you have to realize that everything comes from the faculty and the students. You have to harness their enthusiasm, their aspirations, their vision to create a collective vision.

Juraj Čorba

Juraj Čorba is senior expert on digital regulation and governance, Slovak Ministry of Investments, Regional Development, and Information and Chair of the Working Party on Governance of AI at the Organization for Economic Cooperation and Development.

What are the most important organizations and governing bodies when it comes to policy and governance on artificial intelligence in Europe?

Portrait of a clean-shaven man with brown hair wearing a blue button down shirt.Juraj Čorba

Juraj Čorba: Well, there are many. And it also creates a bit of a confusion around the globe—who are the actors in Europe? So it’s always good to clarify. First of all we have the European Union, which is a supranational organization composed of many member states, including my own Slovakia. And it was the European Union that proposed adoption of a horizontal legislation for AI in 2021. It was the initiative of the European Commission, the EU Institution, which has a legislative initiative in the EU. And the EU AI Act is now finally being adopted. It was already adopted by the European Parliament.

So this started, you said 2021. That’s before ChatGPT and the whole large language model phenomenon really took hold.

Čorba: That was the case. Well, the expert community already knew that something was being cooked in the labs. But, yes, the whole agenda of large models, including large language models, came up only later on, after 2021. So the European Union tried to reflect that. Basically, the initial proposal to regulate AI was based on a blueprint of so-called product safety, which somehow presupposes a certain intended purpose. In other words, the checks and assessments of products are based more or less on the logic of the mass production of the 20th century, on an industrial scale, right? Like when you have products that you can somehow define easily and all of them have a clearly intended purpose. Whereas with these large models, a new paradigm was arguably opened, where they have a general purpose.

So the whole proposal was then rewritten in negotiations between the Council of Ministers, which is one of the legislative bodies, and the European Parliament. And so what we have today is a combination of this old product-safety approach and some novel aspects of regulation specifically designed for what we call general-purpose artificial intelligence systems or models. So that’s the EU.

By product safety, you mean, if AI-based software is controlling a machine, you need to have physical safety.

Čorba: Exactly. That’s one of the aspects. So that touches upon the tangible products such as vehicles, toys, medical devices, robotic arms, etcetera. So yes. But from the very beginning, the proposal contained a regulation of what the European Commission called standalone systems. In other words, software systems that do not necessarily command physical objects. So it was already there from the very beginning, but all of it was based on the assumption that all software has its easily identifiable intended purpose—which is not the case for general-purpose AI.

Also, large language models and generative AI in general brings in this whole other dimension, of propaganda, false information, deep fakes and so on, which is different from traditional notions of safety in real-time software.

Čorba: Well, this is exactly the aspect that is handled by another European organization, different from the EU, and that is the Council of Europe. It’s an international organization established after the Second World War for the protection of human rights, for protection of the rule of law, and protection of democracy. So that’s where the Europeans, but also many other states and countries, started to negotiate a first international treaty on AI. For example, the United States have participated in the negotiations, and also Canada, Japan, Australia, and many other countries. And then these particular aspects, which are related to the protection of integrity of elections, rule-of-law principles, protection of fundamental rights or human rights under international law—all these aspects have been dealt with in the context of these negotiations on the first international treaty, which is to be now adopted by the Committee of Ministers of the Council of Europe on the 16th and 17th of May. So pretty soon. And then the first international treaty on AI will be submitted for ratifications.

So prompted largely by the activity in large language models, AI regulation and governance now is a hot topic in the United States, in Europe, and in Asia. But of the three regions, I get the sense that Europe is proceeding most aggressively on this topic of regulating and governing artificial intelligence. Do you agree that Europe is taking a more proactive stance in general than the United States and Asia?

Čorba: I’m not so sure. If you look at the Chinese approach and the way they regulate what we call generative AI, it would appear to me that they also take it very seriously. They take a different approach from the regulatory point of view. But it seems to me that, for instance, China is taking a very focused and careful approach. For the United States, I wouldn’t say that the United States is not taking a careful approach because last year you saw many of the executive orders, or even this year, some of the executive orders issued by President Biden. Of course, this was not a legislative measure, this was a presidential order. But it seems to me that the US is also trying to address the issue very actively. The US has also initiated the first resolution of the General Assembly at the UN on AI, which was passed just recently. So I wouldn’t say that the EU is more aggressive in comparison with Asia or North America, but maybe I would say that the EU is the most comprehensive. It looks horizontally across different agendas and it uses binding legislation as a tool, which is not always the case around the world. Many countries simply feel that it’s too early to legislate in a binding way, so they opt for soft measures or guidance, collaboration with private companies, etcetera. Those are the differences that I see.

Do you think you perceive a difference in focus among the three regions? Are there certain aspects that are being more aggressively pursued in the United States than in Europe or vice versa?

Čorba: Certainly the EU is very focused on the protection of human rights, the full catalog of human rights, but also, of course, on safety and human health. These are the core goals or values to be protected under the EU legislation. As for the US and for China, I would say that the primary focus in those countries, but this is only my personal impression, is on national and economic security.

Samuel Naffziger

Samuel Naffziger is senior vice president and a corporate fellow at Advanced Micro Devices, where he is responsible for technology strategy and product architectures. Naffziger was instrumental in AMD’s embrace and development of chiplets, which are semiconductor dies that are packaged together into high-performance modules.

To what extent is large language model training starting to influence what you and your colleagues do at AMD?

Portrait of a brown haired man in a dark blue shirt.Samuel Naffziger

Samuel Naffziger: Well, there are a couple levels of that. LLMs are impacting the way a lot of us live and work. And we certainly are deploying that very broadly internally for productivity enhancements, for using LLMs to provide starting points for code—simple verbal requests, such as, “Give me a Python script to parse this data set.” And you get a really nice starting point for that code. Saves a ton of time. Writing verification test benches, helping with the physical design layout optimizations. So there’s a lot of productivity aspects.

The other aspect to LLMs is, of course, we are actively involved in designing GPUs [graphics processing units] for LLM training and for LLM inference. And so that’s driving a tremendous amount of workload analysis on the requirements, hardware requirements, and hardware-software co-design, to explore.

So that brings us to your current flagship, the Instinct MI300X, which is actually billed as an AI accelerator. How did the particular demands influence that design? I don’t know when that design started, but the ChatGPT era started about two years ago or so. To what extent did you read the writing on the wall?

Naffziger: So we were just into the MI300– in 2019, we were starting the development. A long time ago. And at that time, our revenue stream from the Zen [an AMD architecture used in a family of processors] renaissance had really just started coming in. So the company was starting to get healthier, but we didn’t have a lot of extra revenue to spend on R&D at the time. So we had to be very prudent with our resources. And we had strategic engagements with the [U.S.] Department of Energy for supercomputer deployments. That was the genesis for our MI line—we were developing it for the supercomputing market. Now, there was a recognition that munching through FP64 COBOL code, or Fortran, isn’t the future, right? [Laughs.] This machine-learning [ML] thing is really getting some legs.

So we put some of the lower-precision math formats in, like Brain Floating Point 16, at the time, that were going to be important for inference. And the DoE knew that machine learning was going to be an important dimension of supercomputers, not just legacy code. So that’s the way, but we were focused on HPC [high-performance computing]. We had the foresight to understand that ML had real potential. Although certainly no one predicted, I think, the explosion we’ve seen today.

So that’s how it came about. And, just another piece of it: We leveraged our modular chiplet expertise to architect the 300 to support a number of variants from the same silicon components. So the variant targeted to the supercomputer market had CPUs integrated in as chiplets, directly on the silicon module. And then it had six of the GPU chiplets we call XCDs around them. So we had three CPU chiplets and six GPU chiplets. And that provided an amazingly efficient, highly integrated, CPU-plus-GPU design we call MI300A. It’s very compelling for the El Capitan supercomputer that’s being brought up as we speak.

But we also recognize that for the maximum computation for these AI workloads, the CPUs weren’t that beneficial. We wanted more GPUs. For these workloads, it’s all about the math and matrix multiplies. So we were able to just swap out those three CPU chiplets for a couple more XCD GPUs. And so we got eight XCDs in the module, and that’s what we call the MI300X. So we kind of got lucky having the right product at the right time, but there was also a lot of skill involved in that we saw the writing on the wall for where these workloads were going and we provisioned the design to support it.

Earlier you mentioned 3D chiplets. What do you feel is the next natural step in that evolution?

Naffziger: AI has created this bottomless thirst for more compute [power]. And so we are always going to be wanting to cram as many transistors as possible into a module. And the reason that’s beneficial is, these systems deliver AI performance at scale with thousands, tens of thousands, or more, compute devices. They all have to be tightly connected together, with very high bandwidths, and all of that bandwidth requires power, requires very expensive infrastructure. So if a certain level of performance is required—a certain number of petaflops, or exaflops—the strongest lever on the cost and the power consumption is the number of GPUs required to achieve a zettaflop, for instance. And if the GPU is a lot more capable, then all of that system infrastructure collapses down—if you only need half as many GPUs, everything else goes down by half. So there’s a strong economic motivation to achieve very high levels of integration and performance at the device level. And the only way to do that is with chiplets and with 3D stacking. So we’ve already embarked down that path. A lot of tough engineering problems to solve to get there, but that’s going to continue.

And so what’s going to happen? Well, obviously we can add layers, right? We can pack more in. The thermal challenges that come along with that are going to be fun engineering problems that our industry is good at solving.

From Your Site Articles

Related Articles Around the Web

Leave a Comment